

# PipeDecode: Efficient LLM Inference using Pipelines within Decoding



Yunkai Liang [student] Bin Gao\* [student] Pengfei Zuo<sup>◊</sup> Zhi Zhou Xu Chen  
Sun Yat-sen University \*National University of Singapore <sup>◊</sup>Huawei Cloud



HUAWEI CLOUD

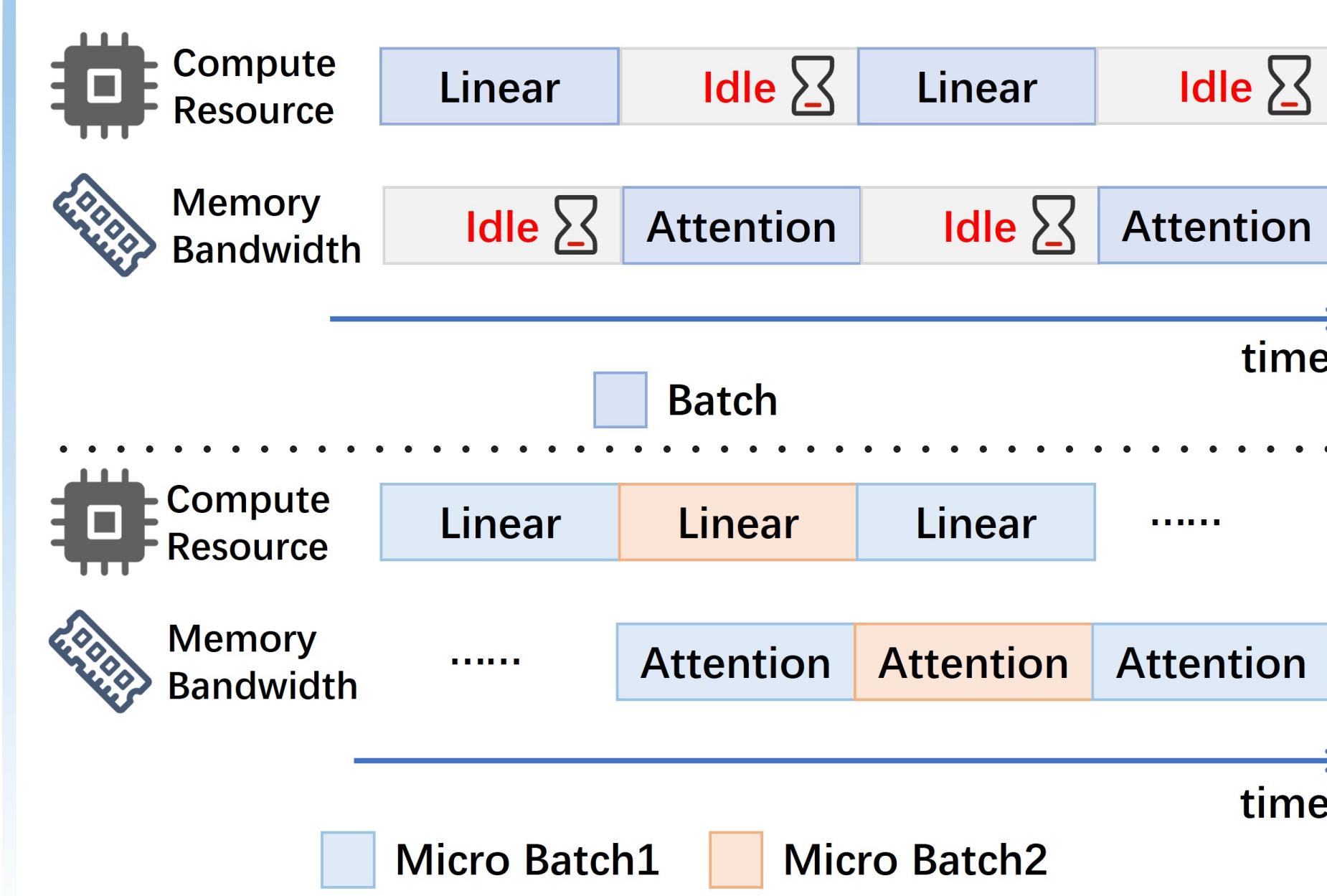
## Problem and Contributions

**Problem:** LLM inference tasks involve multiple iterations of decoding phases, while the decoding phase often suffers from resource under-utilization.

### Contributions:

- Reveal two factors that contribute to the low resource utilization in LLM inference from perspectives of heterogeneous compute-intensive and memory-intensive operators and imbalanced resource allocation.
- Propose an efficient LLM inference system, PipeDecode, that facilitates the concurrent execution of compute-intensive and memory-intensive operators through pipeline interleaving, thereby ensuring optimal resource utilization.
- Prototype PipeDecode and conduct a preliminary evaluation. The initial result shows that PipeDecode can reduce the decoding latency up to 31%.

## Inference Sketch



**Native Execution:**

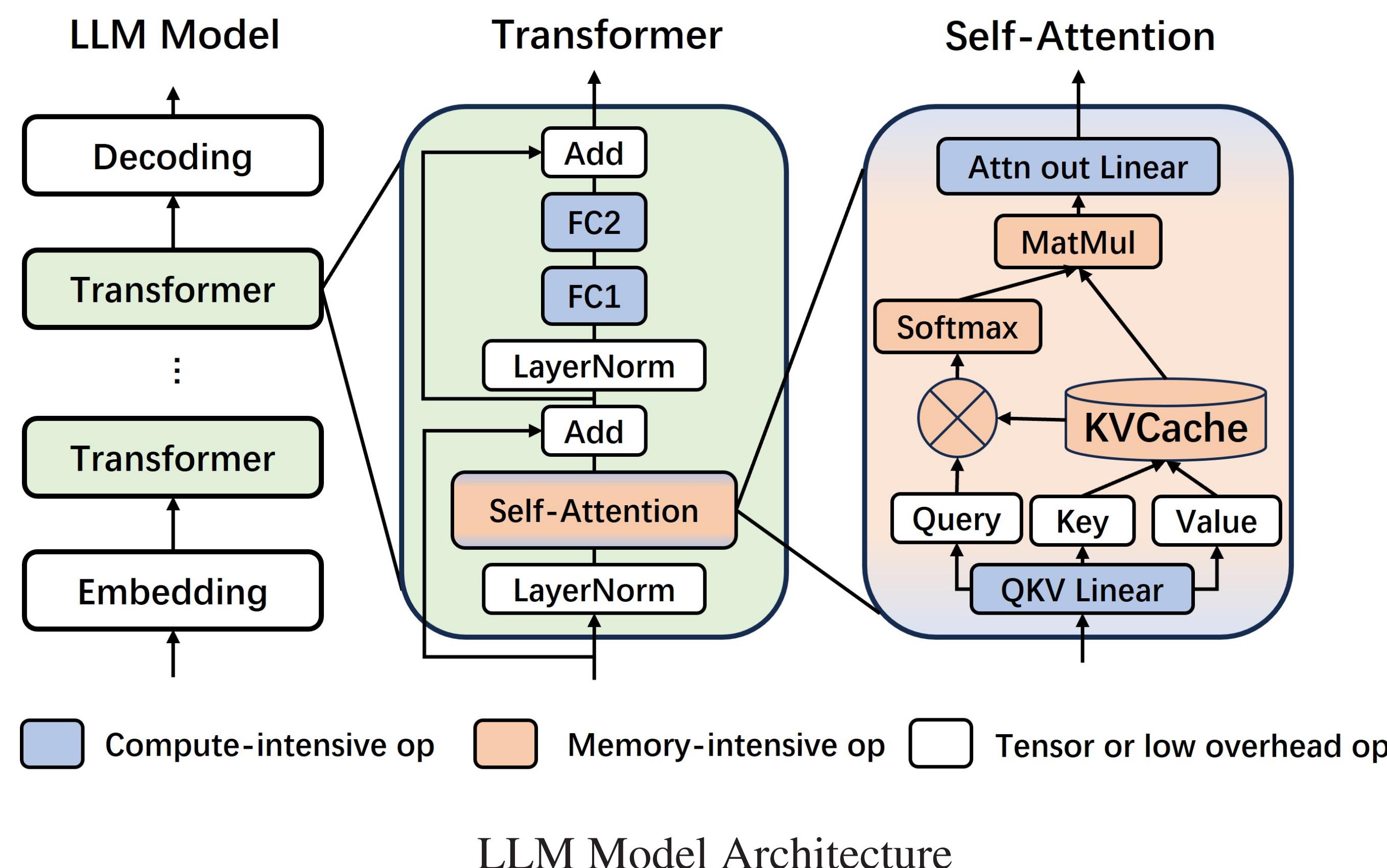
- Inference w/ bubbles
- Period of compute and memory resource idleness

**Pipedecode:**

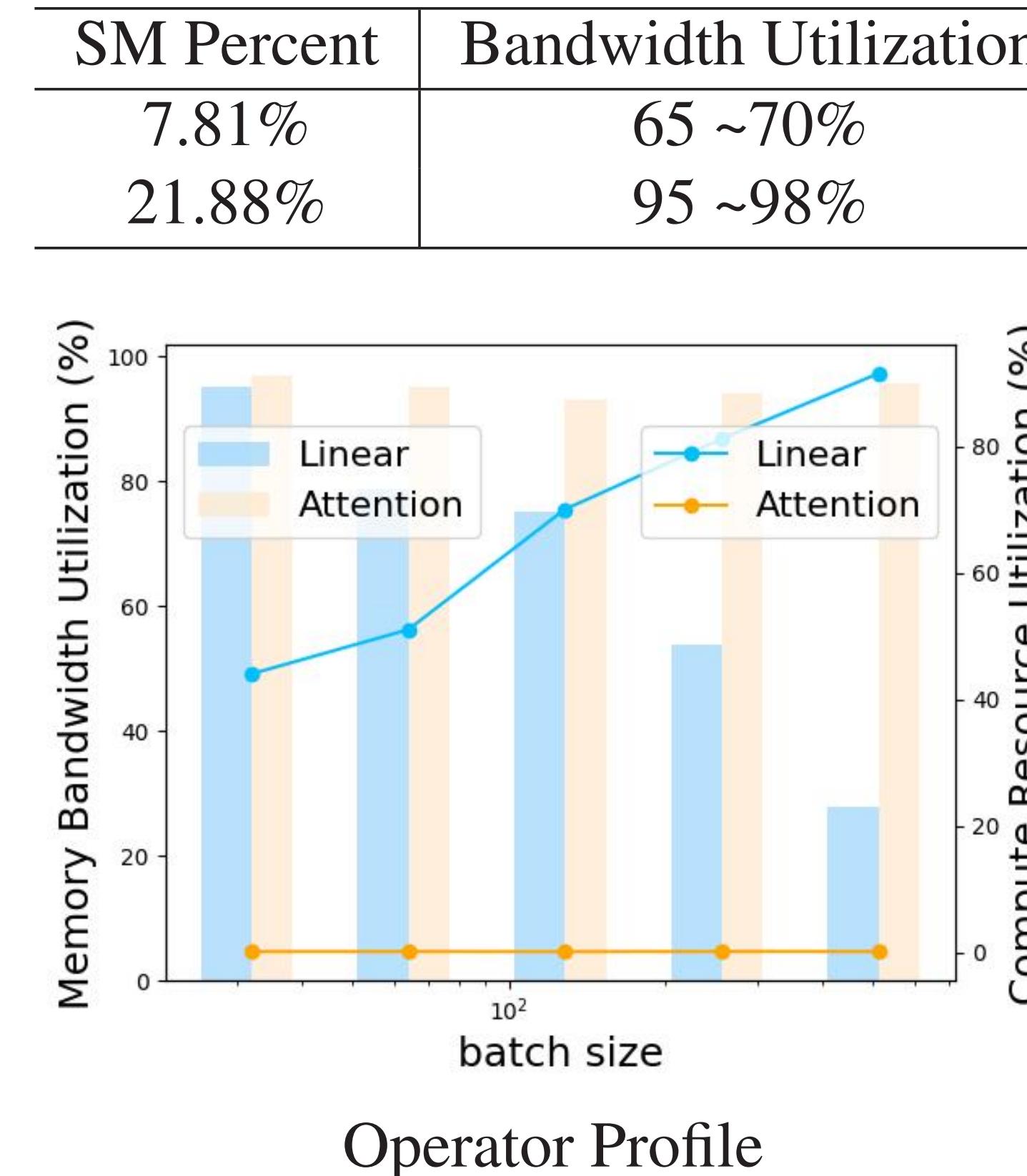
- Inference w/o bubbles
- High compute and memory resource utilization

## Observations

### (a) Periods of compute and memory resource idleness within inference.



### (b) Immutable and imbalanced resource allocation to distinct operators.



In the current inference system, there are **mismatched resource allocation**:

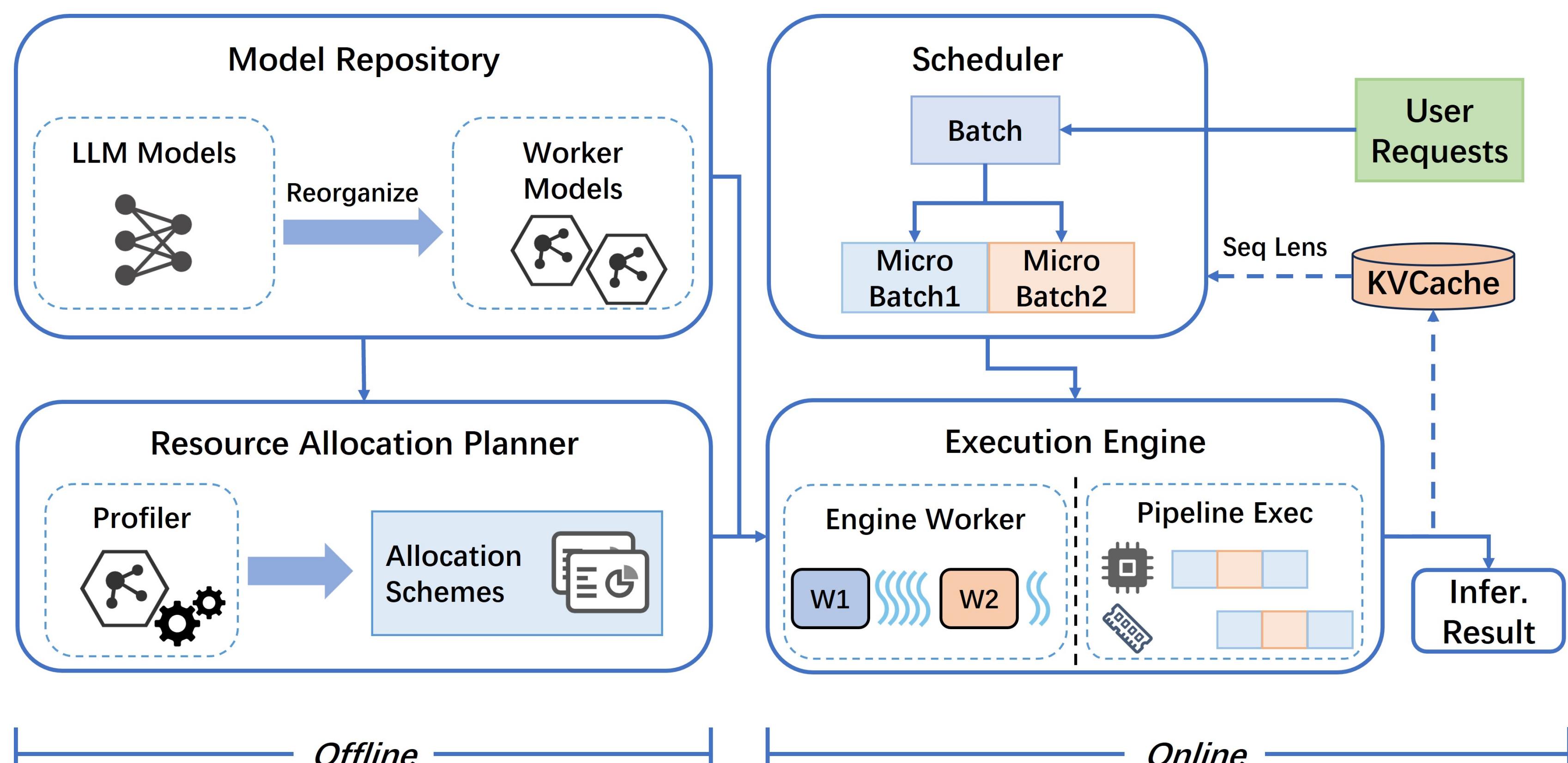
- The resource allocation becomes **immutable** once the model is installed.
- The same amount of computation resources is designated for distinct operators.
- The memory-intensive operator, the attention operator, can achieve most of the bandwidth utilization with significantly fewer SM resources.
- While the compute-intensive operator, the linear operators, require more compute resources, which is proportional to SM resources.

## Challenges

To achieve the perfect overlapping, implementing PipeDecode needs to tackle the following challenge:

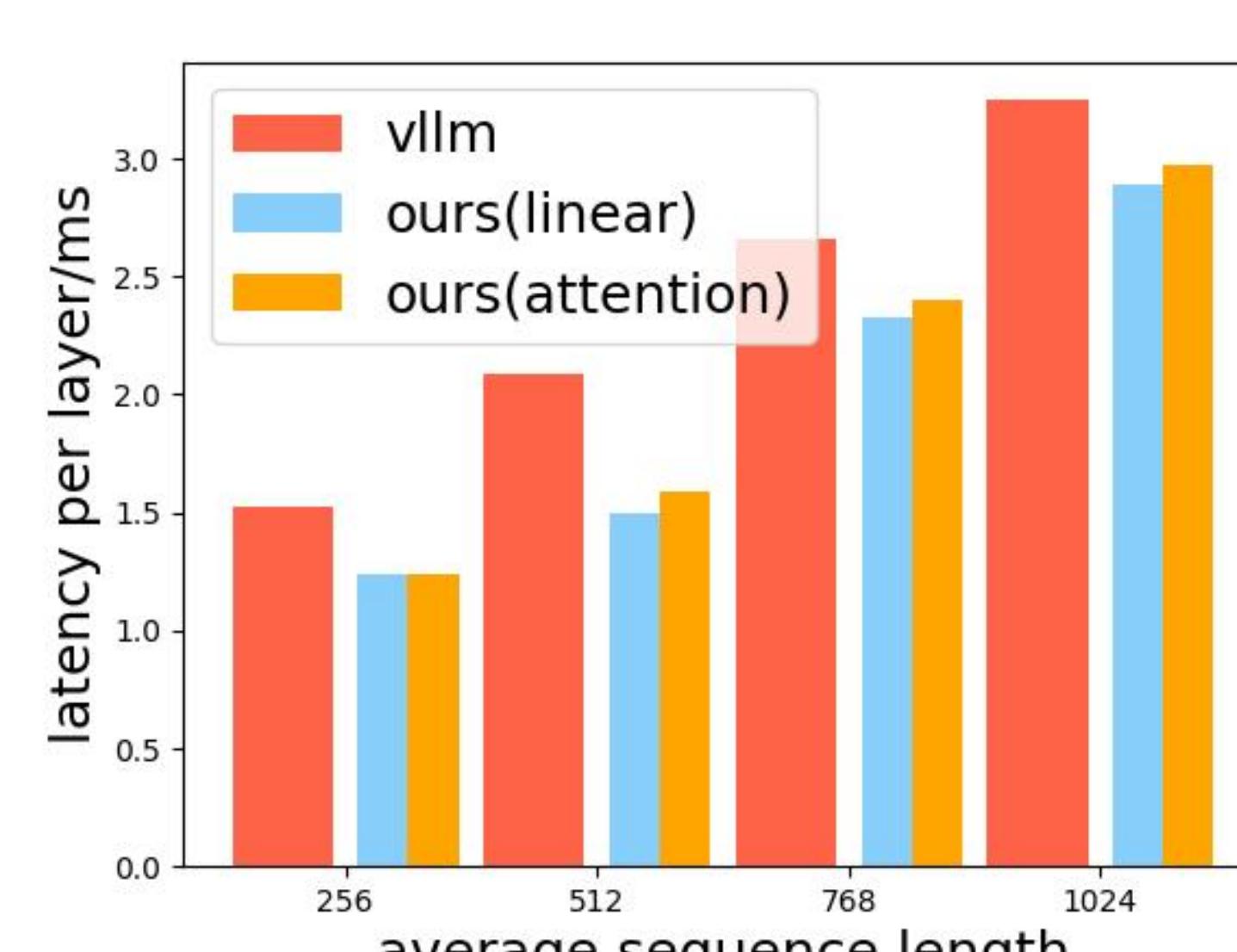
- Task scheduling:** Different context lengths[1] in inference tasks result in different execution times of the two different operators, which may cause bubbles in pipeline execution.
- Dynamic resource allocation:** The execution times of the operators are sensitive to the resources allocated to them, managing resource allocation to operators is also vital in minimizing execution bubbles.

## System Overview



- Offline components: the Model Repository reorganizes the model for workers to execute; the Resource Allocation Planner profiles model execution and provides resource allocation schemes.
- Online components: the Scheduler dispatches requests to micro-batch based on their sequence lengths; the Execution Engine executes inference jobs on workers with distinct SM resources.

## Evaluation



We prototyped PipeDecode on NVIDIA GTX 4090, and evaluated it with layers of Llama-7B model, a widely used open-source LLM.

Our evaluation shows that PipeDecode can reduce the decoding latency up to 31% across various sequence lengths compared to a state-of-the-art serving system vLLM[2].

## References:

- [1] Wang Y, et al. LLM Workload Study (2024)
- [2] Kwon W, et al. Pagedattention. OSDI (2024)