
PipeDecode: Efficient LLM Inference
using Pipelines within Decoding

Yunkai Liang [student] Bin Gao∗ [student] Pengfei Zuo⋄ Zhi Zhou Xu Chen
Sun Yat-sen University ∗National University of Singapore ⋄Huawei Cloud

Problem and Contributions
Problem: LLM inference tasks involve multiple iterations of decoding phases,
while the decoding phase often suffers from resource under-utilization.
Contributions:
• Reveal two factors that contribute to the low resource utilization in LLM in-

ference from perspectives of heterogeneous compute-intensive and memory-
intensive operators and imbalanced resource allocation.

• Propose an efficient LLM inference system, PipeDecode, that facilitates the
concurrent execution of compute-intensive and memory-intensive operators
through pipeline interleaving, thereby ensuring optimal resource utilization.

• Prototype PipeDecode and conduct a preliminary evaluation. The initial result
shows that PipeDecode can reduce the decoding latency up to 31%.

Inference Sketch
Native Execution:
• Inference w/ bubbles
• Period of compute and

memory resource idle-
ness

. .
Pipedecode:
• Inference w/o bubbles
• High compute and mem-

ory resource utilization

Observations
(a) Periods of compute and memory resource idleness within inference.

LLM Model Architecture

(b) Immutable and imbalanced resource allocation to distinct operators.

SM Percent Bandwidth Utilization
7.81% 65 ~70%
21.88% 95 ~98%

Operator Profile

In the current inference system, there
are mismatched resource allocation:

• The resource allocation becomes im-
mutable once the model is installed.

• The same amount of computation re-
sources is designated for distinct op-
erators.

• The memory-intensive operator, the
attention operator, can achieve most
of the bandwidth utilization with sig-
nificantly fewer SM resources.

• While the compute-intensive opera-
tor, the linear operators, require more
compute resources, which is propor-
tional to SM resources.

Challenges
To achieve the perfect overlapping,
implementing PipeDecode needs to
tackle the following challenge:

• Task scheduling: Different context
lengths[1] in inference tasks result
in different execution times of the
two different operators, which may
cause bubbles in pipeline execution.

• Dynamic resource allocation: The
execution times of the operators are
sensitive to the resources allocated
to them, managing resource alloca-
tion to operators is also vital in min-
imizing execution bubbles.

Methods
• To solve Challenge 1, PipeDecode

selects suitable sequence length re-
quests to combine into a micro-
batch request. By rescheduling
user requests, PipeDecode can bal-
ance the execution time and mini-
mize possible bubbles between two
micro-batches.

• To solve Challenge 2, PipeDecode
assigns more SM resources for the
linear operator and less for attention
operator. Besides, PipeDecode dy-
namically adjust the SM allocation
based on request lengths so as to
minimize bubbles during inference.

System Overview

• Offline components: the Model Repository reorganizes the model for workers to execute; the Resource Allocation Planner
profiles model execution and provides resource allocation schemes.

• Online components: the Scheduler dispatches requests to micro-batch based on their sequence lengths; the Execution
Engine executes inference jobs on workers with distinct SM resources.

Evaluation
We prototyped PipeDecode on NVIDIA GTX 4090, and evaluated it
with layers of Llama-7B model, a widely used open-source LLM.

Our evaluation shows that PipeDecode can reduce the decoding latency
up to 31% across various sequence lengths compared to a state-of-the-
art serving system vLLM[2].

References:

[1] Wang Y, et al. LLM Workload Study (2024)
[2] Kwon W, et al. Pagedattention. OSDI (2024)

