PipeDecode: Efficient LLLM Inference
using Pipelines within Decoding

Bin Gao* [student] Pengfei Zuo® ZhiZhou Xu Chen

Sun Yat-sen University

Yunkai Liang [student]

Problem and Contributions

Problem: LLM inference tasks involve multiple iterations of decoding phases,
while the decoding phase often suffers from resource under-utilization.

Contributions:

e Reveal two factors that contribute to the low resource utilization in LLM 1n-
ference from perspectives of heterogeneous compute-intensive and memory-
intensive operators and imbalanced resource allocation.

 Propose an efficient LLM inference system, PipeDecode, that facilitates the
concurrent execution of compute-intensive and memory-intensive operators
through pipeline interleaving, thereby ensuring optimal resource utilization.

* Prototype PipeDecode and conduct a preliminary evaluation. The initial result
shows that PipeDecode can reduce the decoding latency up to 31%.

Observations

(a) Periods of compute and memory resource idleness within inference.

LLM Model Transformer

LayerNorm

» Add
|

[Self-Attention

|
LayerNorm

Embedding

@@ HUAWEI CLOUD

*National University of Singapore “Huawei Cloud HUAWEI

Inference Sketch

gg;?)ﬁt';ee Linear Idle 8 Linear Idle 8 Native Execution:
e Inference w/ bubbles

2\ Memory : : 1
Bandwidth dle p{ Attention dle p{ | Attention * Period of Compute.and
memory resource 1dle-

time
Batch Ness
Compute : : : .
Resource Linear Linear Linear - Plpedecode:
A Memory e Inference w/o bubbles
ON MEMIOLY o - - - _
Bandwidth Attention Attention Attention e Hij gh compute and mem-
g ory resource utilization
Micro Batchl Micro Batch2

(b) Immutable and imbalanced resource allocation to distinct operators.

Self-Attention SM Percent | Bandwidth Utilization In the current inference system, there

7.81% 65 ~70% are mismatched resource allocation:

Attn out Linear

21.88% 95 ~98%

e The resource allocation becomes im-

A
MatMul

Softmax/\

H
o
]

@

Query

t QKV Linear

Memory Bandwidth Utilization (%)

Compute-intensive op Memory-intensive op Tensor or low overhead op

LLILM Model Architecture

Challenges

To achieve the perfect overlapping,
implementing PipeDecode needs to
tackle the following challenge:

e Task scheduling: Different context
lengths[1] 1n inference tasks result
in different execution times of the
two different operators, which may
cause bubbles 1n pipeline execution.

 Dynamic resource allocation: The
execution times of the operators are
sensitive to the resources allocated
to them, managing resource alloca-
tion to operators 1s also vital in min-
1Imizing execution bubbles.

Methods

 To solve Challenge 1, PipeDecode
selects suitable sequence length re-
quests to combine Into a micCro-
batch request. By rescheduling
user requests, PipeDecode can bal-
ance the execution time and mini-
mize possible bubbles between two
micro-batches.

 To solve Challenge 2, PipeDecode
assigns more SM resources for the
linear operator and less for attention
operator. Besides, PipeDecode dy-
namically adjust the SM allocation
based on request lengths so as to
minimize bubbles during inference.

System Overview

mutable once the model 1s installed.

0
L
i

h
o
i

A=
o
i

J
o
i

!/,-»0
/,./"

Linear —e— Linear -89

Attention Attention
L 60 -

Or"/

 The same amount of computation re-
sources 1s designated for distinct op-
erators.

 The memory-intensive operator, the
attention operator, can achieve most
of the bandwidth utilization with sig-
nificantly fewer SM resources.

 While the compute-intensive opera-

Compute Resource Utilization (%)

1 T |
102

tor, the linear operators, require more
batch size

compute resources, which 1s propor-
Operator Profile tional to SM resources.

————————————————

" LLM Models

E , Reorganize

/ Model Repository \ / Scheduler \

JFT— \ User

5 - ' '

. | : : Seq Lens

| @ , Micro Micro A
<E>/ _ Batchl | Batch? /" _@Cfc@

\ Batch '«
Worker i Requests

Models N |

|
|
|
|
\
\ ,
. e e e et —— m— —" —" - L4

v

-—— o e o

Resource Allocation Planner

Execution Engine

I I I
| ! | I
Allocation i #
@ Schemes = i Infer.
o = iR) et

N

| Offline

r —
I — e Ly Result
I I Online I

e Offline components: the Model Repository reorganizes the model for workers to execute; the Resource Allocation Planner
profiles model execution and provides resource allocation schemes.

 Online components: the Scheduler dispatches requests to micro-batch based on their sequence lengths; the Execution
Engine executes inference jobs on workers with distinct SM resources.

We prototyped PipeDecode on NVIDIA GTX 4090, and evaluated 1t

Evaluation
.o W vlim
E ours(linear)
E 231 ours(attention)
>
@© 2.0
O
£ 15 4
N
O
= 1.0 -
he
©
0.5 1

with layers of Llama-7B model, a widely used open-source LLM.

Our evaluation shows that PipeDecode can reduce the decoding latency
up to 31% across various sequence lengths compared to a state-of-the-
art serving system vLLM]2].

References:

1] Wang Y, et al. LLM Workload Study (2024)

o
=
I

256 512 768 lDIE-ﬂ
average sequence length

2] Kwon W, et al. Pagedattention. OSDI (2024)

