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Problem and Contributions

Problem: LLM inference tasks involve multiple iterations of decoding phases,
while the decoding phase often suffers from resource under-utilization.

Contributions:

e Reveal two factors that contribute to the low resource utilization in LLM 1n-
ference from perspectives of heterogeneous compute-intensive and memory-
intensive operators and imbalanced resource allocation.

 Propose an efficient LLM inference system, PipeDecode, that facilitates the
concurrent execution of compute-intensive and memory-intensive operators
through pipeline interleaving, thereby ensuring optimal resource utilization.

* Prototype PipeDecode and conduct a preliminary evaluation. The initial result
shows that PipeDecode can reduce the decoding latency up to 31%.

Observations

(a) Periods of compute and memory resource idleness within inference.
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(b) Immutable and imbalanced resource allocation to distinct operators.
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e The resource allocation becomes im-
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Challenges

To achieve the perfect overlapping,
implementing PipeDecode needs to
tackle the following challenge:

e Task scheduling: Different context
lengths[1] 1n inference tasks result
in different execution times of the
two different operators, which may
cause bubbles 1n pipeline execution.

 Dynamic resource allocation: The
execution times of the operators are
sensitive to the resources allocated
to them, managing resource alloca-
tion to operators 1s also vital in min-
1Imizing execution bubbles.

Methods

 To solve Challenge 1, PipeDecode
selects suitable sequence length re-
quests to combine Into a micCro-
batch request. By rescheduling
user requests, PipeDecode can bal-
ance the execution time and mini-
mize possible bubbles between two
micro-batches.

 To solve Challenge 2, PipeDecode
assigns more SM resources for the
linear operator and less for attention
operator. Besides, PipeDecode dy-
namically adjust the SM allocation
based on request lengths so as to
minimize bubbles during inference.

System Overview

mutable once the model 1s installed.
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 The same amount of computation re-
sources 1s designated for distinct op-
erators.

 The memory-intensive operator, the
attention operator, can achieve most
of the bandwidth utilization with sig-
nificantly fewer SM resources.

 While the compute-intensive opera-
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tor, the linear operators, require more
batch size

compute resources, which 1s propor-
Operator Profile tional to SM resources.
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e Offline components: the Model Repository reorganizes the model for workers to execute; the Resource Allocation Planner
profiles model execution and provides resource allocation schemes.

 Online components: the Scheduler dispatches requests to micro-batch based on their sequence lengths; the Execution
Engine executes inference jobs on workers with distinct SM resources.

We prototyped PipeDecode on NVIDIA GTX 4090, and evaluated 1t
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with layers of Llama-7B model, a widely used open-source LLM.

Our evaluation shows that PipeDecode can reduce the decoding latency
up to 31% across various sequence lengths compared to a state-of-the-
art serving system vLLM]2].

References:

1] Wang Y, et al. LLM Workload Study (2024)

o
=
I

256 512 768 lDIE-ﬂ
average sequence length

2] Kwon W, et al. Pagedattention. OSDI (2024)



